The influence of nasal airflow on respiratory and olfactory epithelial distribution in felids.

نویسندگان

  • Benison Pang
  • Karen K Yee
  • Fritz W Lischka
  • Nancy E Rawson
  • Mark E Haskins
  • Charles J Wysocki
  • Brent A Craven
  • Blaire Van Valkenburgh
چکیده

The surface area of the maxilloturbinals and fronto-ethmoturbinals is commonly used as an osteological proxy for the respiratory and the olfactory epithelium, respectively. However, this assumption does not fully account for animals with short snouts in which these two turbinal structures significantly overlap, potentially placing fronto-ethmoturbinals in the path of respiratory airflow. In these species, it is possible that anterior fronto-ethmoturbinals are covered with non-sensory (respiratory) epithelium instead of olfactory epithelium. In this study, we analyzed the distribution of olfactory and non-sensory, respiratory epithelia on the turbinals of two domestic cats (Felis catus) and a bobcat (Lynx rufus). We also conducted a computational fluid dynamics simulation of nasal airflow in the bobcat to explore the relationship between epithelial distribution and airflow patterns. The results showed that a substantial amount of respiratory airflow passes over the anterior fronto-ethmoturbinals, and that contrary to what has been observed in caniform carnivorans, much of the anterior ethmoturbinals are covered by non-sensory epithelium. This confirms that in short-snouted felids, portions of the fronto-ethmoturbinals have been recruited for respiration, and that estimates of olfactory epithelial coverage based purely on fronto-ethmoturbinal surface area will be exaggerated. The correlation between the shape of the anterior fronto-ethmoturbinals and the direction of respiratory airflow suggests that in short-snouted species, CT data alone are useful in assessing airflow patterns and epithelium distribution on the turbinals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Olfactory Function before and After Endoscopic Sinus Surgery

Introduction: Olfactory loss in patients with chronic rhinosinusitis has been measured by different methods. However, the results have been variable, and it is not clear whether endoscopic sinus surgery significantly improves olfactory function. This study was performed to evaluate the influence of endoscopic sinus surgery on olfactory function in patients with chronic rhinosinusitis.  Material...

متن کامل

Reshaping of Bulbar Odor Response by Nasal Flow Rate in the Rat

BACKGROUND The impact of respiratory dynamics on odor response has been poorly studied at the olfactory bulb level. However, it has been shown that sniffing in the behaving rodent is highly dynamic and varies both in frequency and flow rate. Bulbar odor response could vary with these sniffing parameter variations. Consequently, it is necessary to understand how nasal airflow can modify and shap...

متن کامل

A dynamic and direct visualization model for the study of nasal airflow.

OBJECTIVE To evaluate nasal airflow characteristics during physiologic breathing in normal and pathologic conditions. DESIGN The choana of an anatomical human model was connected to a pump that simulated physiological pressure changes in the upper airway system. Normal ambient air was used as medium. The airstream was marked with aerosolized water particles, and was observed through an exact ...

متن کامل

Lateral Nasal Wall Respiratory Epithelial Adenomatoid Hamartoma (REAH): A Diagnostic Conundrum

Introduction: This study aims to report a rare case of a respiratory epithelial adenomatoid hamartoma (REAH) of the lateral nasal wall that had initially presented as a fungating mass, similar to that of a sinonasal malignancy, and its complete removal from the lateral nasal wall.   Case Report: We report the case of a 58-year-old woman who presented to us with a chief complaint of recurrent ri...

متن کامل

Modeling inspiratory and expiratory steady-state velocity fields in the Sprague-Dawley rat nasal cavity.

Distribution patterns of odorant molecules in the rat nasal olfactory region depend in large part on the detailed airflow patterns in the nasal cavity, which in turn depend on the anatomical structure. To investigate these flow patterns, we constructed an anatomically accurate finite element model of the right nasal cavity of the Sprague-Dawley rat based on horizontal (anterior-posterior) nasal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 219 Pt 12  شماره 

صفحات  -

تاریخ انتشار 2016